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Abstract

Progesterone (pregn-4-ene-3,20-dione; P) and its metabolite 5α-pregnan-3α-ol-20-one (3α,5α-THP) are secreted by ovaries, adrenals, and glial
cells. 3α,5α-THP in the midbrain ventral tegmental area mediates sexual receptivity of rodents through its actions at GABAA, NMDA, and/or D1

receptors. The extent to which 3α,5α-THPmay influence anti-anxiety/anti-stress effects, conditioning and/or reward through these substrates and/or
by altering hypothalamic pituitary adrenal axis function is discussed. Biosynthesis of 3α,5α-THP occurs in responses to mating and may underlie
some of the rewarding aspects of sexual behavior. Recent findings from our laboratory which demonstrate that progestins can enhance approach to
novel stimuli, conditioning, and reinforcement are reviewed. How progestins' effects on these processes may underlie response to drugs of abuse is
considered and new findings which demonstrate interactions between progestins and cocaine are presented.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Hormones are trophic factors that profoundly influence brain
and behavior. In my laboratory, we are particularly interested in
the steroid hormone progesterone (pregn-4-ene-3,20-dione; P),
which is the primary progestin secreted by the ovaries, and to a
lesser extent, the adrenals. In the brain, P is converted by the 5α-
reductase enzyme to dihydroprogesterone (5β-Pregnan- 3,20-
dione-DHP), which like P, binds with a high affinity for intra-
cellular progestin receptors (PRs) that are located in the
hypothalamus and other brain regions (reviewed in Blaustein et
al., 1994; Iswari et al., 1986; Smith et al., 1974). DHP is
subsequently converted in brain by the 3α-hydroxysteroid
oxidoreductase enzyme to form 5α-pregnan-3α-ol-20-one
(3α,5α-THP), which in physiological concentrations, does not
bind readily to PRs (Rupprecht and Holsboer, 1999). 3α,5α-THP
is secreted by the ovaries and adrenals and is formed centrally
from metabolism of peripheral P and/or DHP. As well, 3α,5α-
THP is synthesized centrally in the brain by glial cells in response
to stress, independent of peripheral gland secretion. Centrally,
3α,5α-THP has actions via GABAA, NMDA, and/or dopamine
receptors, and downstream signal transduction pathways, rather
than intracellular progestin receptors, which is a substrate for P's
actions (Frye, 2001a,b; 2006a,b; Frye and DeBold, 1992; Frye
and Vongher, 1999a,b; Frye et al., 1993, 1999, 2000, 2006a,b,c,d,
e,f; Petralia and Frye, 2004). 3α,5α-THP can also have effects to
dampen hypothalamic pituitary adrenal axis function (Patchev
et al., 1994, 1996). Indeed, it has been hypothesized that 3α,5α-
THP is a very important neuroendocrine regulator that may be
involved in homeostatic responses, as demonstrated by its increase in
response to stress and subsequent effects to enhance parasympathetic
activity (Engel and Grant, 2001). Thus, this review paper discusses
howvariations in progestinsmaymediate behavioral processes, such
as reward, conditioning, and/or stress, which may influence
susceptibility and/or response to drugs of abuse.

2. Progestins and reproductive cycles

Progestins co-vary with estradiol (17β-estra-1,3,5(10)-tri-
ene-3,17 β-diol; E2) across reproductive cycles. Throughout
development, females have greater variations in, and higher
levels of, P and 3α,5α-THP than do males. During the
follicular phase of the menstrual cycle, progestin levels of
women (P: 1–2 nmol/l; 3α,5α-THP 0.3 nmol/l) are low similar
to that of men (P: 1–2 nmol/l; 3α,5α-THP 0.3 nmol/l).
However, during the luteal phase (P: 25 nmol/l; 3α,5α-THP
2 nmol/l) and pregnancy (P: 650 nmol/l; 3α,5α-THP 14 nmol/
l), progestin levels of women are much higher than are men's
(Genazzani et al., 1998; Pearson Murphy and Allison, 2000).
This same pattern occurs for rats and mice (Frye and Bayon,
1999; Frye and Vongher, 1999a,b,c,d,e, 2001; Holzbauer, 1975,
1976, 1985; Holzbauer et al., 1985). During the diestrous phase
of the estrous cycle, progestin levels of female rats (P: 20-
60 nmol/l; 3α,5α-THP 5–25 nmol/l) are low similar to that of
males (P: 1–45 nmol/l; 3α,5α-THP 1–20 nmol/l). However,
during the proestrous phase (P: 60–100 nmol/l; 3α,5α-THP
25–40 nmol/l) and pregnancy (P: 75–150 nmol/l; 3α,5α-THP
50–75 nmol/l), progestin levels of females are much higher
than that of males.

Sex differences in progestin levels are mainly due to gonadal
and adrenal sources; however, central biosynthesis of 3α,5α-
THP may also be a source of differences in progestin
concentrations. E2 also varies with progestins over reproductive
cycles and can enhance biosynthesis of progestins in brain and
may influence processes related to effects of drugs of abuse
(Carroll et al., 2004; Cheng and Karavolas, 1973; Frye and
Rhodes, 2005a,b,c; Malendowicz, 1976; Resko et al., 1986;
Vongher and Frye, 1999). However, effects of E2 are not
discussed further here, as this topic is addressed comprehen-
sively in another contribution to this special issue.

3. Progestins and motivated behaviors

In animal models, progestins can influence the expression of
motivated behaviors, such as feeding, fighting, fleeing, and
mating. During reproductive cycles, when progestin levels are
higher, the incidence of many motivated behaviors, including
feeding, anti-conflict behavior, running wheel activity and lever
presses, and sexual behavior, are greater than during the low-
progestin phases of the cycle (Canonaco et al., 1990; Gerall and
Dunlap, 1973; Gerall et al., 1973; Kanarek and Beck, 1980;
Roberts et al., 1989a,b; Roth et al., 2005). Ovariectomy (ovx),
removal of the ovaries which are the primary endogenous
peripheral source of progestins, obviate cyclic increases in these
motivated behaviors. Administration of P and/or its metabolites,
but not vehicle, reinstates increases in food consumption, anti-
aggressive behavior, running wheel activity and lever presses,
and sexual behavior of ovx rats to levels which are comparable
to that observed over the estrous cycle (Bless et al., 1997;
Canonaco et al., 1990; Chen et al., 1996; Frye, 2001a,b;
Marrone et al., 1975; Mascarenhas et al., 1992; Miczek et al.,
2003; Pinna et al., 2005).

4. Progestins and lordosis

The lordosis reflex that sexually-receptive rodents display in
response to mating-relevant stimulation is a motivated behavior
that has been extensively utilized to ascertain effects and
mechanisms of progestins. Using a standard laboratory mating
paradigm, we have placed proestrous females with male rodents
in a small arena, and the incidence and intensity of the female's
lordosis response is assessed for a maximum of 10 min. Mice
(c57s) that have higher incidence and intensity of lordosis on
initial mating have greater central levels 3α,5α-THP than P in
the hypothalamus and midbrain, brain areas that are required for
P-facilitated mating (Frye and Vongher, 2001). As well, there are
differences in lordosis and midbrain 3α,5α-THP levels of adult
rats that were selectively bred for divergent anxiety responses to
maternal separation as infants (Frye et al., 2006b,c,d). Adult rats
that demonstrated higher infantile anxiety responses showed
significantly greater incidence and intensity of lordosis,
solicitation behavior, anti-aggressive behavior, and midbrain
3α,5α-THP than do their counterparts that were bred for low
anxiety responses perinatally (Table 1). These findings suggest



Table 1
Reproductive and endocrine measures of adult, proestrous rats (n=8–16/grp)
that were selectively bred for infantile vocalization responses to maternal
separation

Measure Rats selectively-
bred for response to
maternal separation
as infants

High-
anxiety

Low-
anxiety

Incidence of lordosis (%) 80±6⁎ 54±10
Intensity of lordosis 2.3±0.2⁎ 1.4±0.3
Incidence of solicitation (%) 54±9# 33±10
Incidence of aggression (%) 17±5⁎ 36±11
Plasma 3α,5α-THP levels (not-tested rats — nmol/l) 110±9# 84±10
Plasma 3α,5α-THP levels (tested rats — nmol/l) 168±21⁎ 90±13
Midbrain 3α,5α-THP levels (not-tested rats — nmol/g) 27±5# 16±4
Midbrain 3α,5α-THP levels (tested rats — nmol/g) 18±2⁎ 10±1

* Indicates analyses of variance or t-tests reveal a significant difference
(pb0.05) between groups. # Indicates analyses of variance or t-tests reveal a
tendency for differences (pb0.10) between groups.
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that individual variability in reproductive behavior may be
associated with endogenous differences in 3α,5α-THP.

Manipulating levels of progestins also alters reproductive
behavior. Administering P or 3α,5α-THP systemically, to the
hypothalamus, and/or midbrain, facilitates lordosis behavior of
ovx, E2-primed rodents (Frye, 2001a,b; Frye and Gardiner,
1996; Frye and Vongher, 1999c,d, 2001; Frye et al., 2004).
Experimental manipulations that increase 3α,5α-THP, inde-
pendent of P levels in midbrain, are sufficient to enhance
lordosis (Frye, 2001a,b; Frye et al., 2003, 2004; Frye and
Petralia, 2003a,b; Frye and Seliga, 2003). Inhibiting P's
metabolism to 3α,5α-THP by systemic or intra-VTA infusions
of metabolism inhibitors decreases lordosis commensurate with
lowering 3α,5α-THP levels (Frye and Vongher, 2001; Frye et
al., 1998; Petralia et al., 2001; Petralia and Frye, 2005). These
findings demonstrate that there are causal effects of 3α,5α-THP
in the midbrain VTA to facilitate lordosis.

Findings, such as these, have led us to consider the extent to
which effects of 3α,5α-THP on lordosis are related to its effects
on anxiety and/or changes in sensory processing. As such, we
have begun to use another approach to examine this.

5. Progestins and paced mating

Although using lordosis as a bioassay has been advantageous
to begin to elucidate progestins' actions in the VTA, there are
serious limitations to this approach. First, lordosis may not be the
most sensitive behavioral measure. It is a species-typical,
stereotypic posture that female rodents assume to enable mating.
Due to its reflexive nature, lordosis may be more impervious to
manipulations, or subtle variations in response to manipulations,
may not be evident. Second, the experimental paradigm of
standard mating, which is typically employed when lordosis is
used as a bioassay, is limited. In a standard mating paradigm, rats
are typically placed in small arenas (aquaria) that may not enable
the full complement of behaviors to be expressed and/or readily
observed. Indeed, in a standard mating paradigm, male rats
readily maneuver females into corners. Because females cannot
escape in this situation, mating is very “efficient” and involves
minimal social interaction, limiting the face validity and broader
interpretations from this measure.

More naturalistic mating is characterized by exploration and
affiliations, social behaviors that bring individuals together, as
well as reproductive and aggressive behaviors (Carter et al.,
1999). Reproduction requires that exploration occurs to find
mates, that fearful responses to potential mates are suppressed,
and that approaches are made to stimuli that previously elicited
aggressive responses (Carter et al., 1999). Hence, exploration
must be enhanced and aggressive behaviors inhibited for mating
to occur. The prior section discussed evidence that 3α,5α-THP
mediates lordosis. Notably, 3α,5α-THP may have a role in other
mating-relevant behaviors (solicitation, aggression, anxiety),
which suggest its functional role extends beyond the reflexive
lordosis posture. The approaches and data in support of this are
presented below.

One approach that we have used to address progestins' role
and mechanisms in motivated behaviors beyond lordosis is to
utilize a more ethologically-relevant mating paradigm. In semi-
natural “paced” mating paradigms, female rats control sexual
contacts from a male, the mating sequence takes longer to occur,
and the resulting fertility and fecundity are greater than what
occurs with standard mating (Coopersmith and Erskine, 1994;
Frye and Erskine, 1990). Interestingly, female rats that can pace
their reproductive contacts, but not those which are standard
mated, demonstrate mating-induced conditioned place preference
(CPP; Paredes and Alonso, 1997; Frye et al., 1998; Gonzalez-
Flores et al., 2004). Notably, formation of 3α,5α-THP is
necessary for paced mating to occur and paced mating (like
standard mating—Table 1) also increases biosynthesis of 3α,5α-
THP (Frye et al., 1996, 1998, 2000; Frye, 2002; Paredes and
Alonso, 1997). Although these findings suggest that formation of
3α,5α-THPmay underlie some of the uniquely rewarding aspects
of paced mating, whether paced mating requires 3α,5α-THP
stimulation of GABAA receptors, and/or can be mimicked by
other GABAA agonists is not known but is the subject of future
investigations in our laboratory.

6. Progestins and approach of novel stimuli

Because a defining aspect of paced mating is that female rats
approach males, and progestins are integral for this, we have
begun to investigate whether progestins enhance interaction
with other novel stimuli. To address whether P would also
influence approach of ovx rats towards a novel female, ovx rats
were administered P (4 mg/kg, SC) or sesame oil vehicle and
then placed in an open field with a novel conspecific. During a
5 min observation period, P administered rats (109±7 s) spent
significantly longer in social interaction than did vehicle-
administered rats (35±5 s). To ascertain whether these effects
extended to novel stimuli, ovx rats were placed in an open field
with two novel objects that were the same and the duration of
time they spent investigating these objects was recorded for
3 min. Immediately after this training, rats were administered P



Table 2
Effects of P (4 mg/kg SC; n=6–8/grp) or vehicle (sesame oil, 0.2 cc, SC; n=6–
8/grp) administration to ovariectomized rats on behavioral measures of approach
in the social interaction, object recognition, and Y-maze tasks and endocrine
measure (plasma and midbrain P and 3α,5α-THP levels)

Task/measure (units) Compound administered

Progesterone Vehicle

Social interaction/time with conspecific
(% of total time)

37±7* 11±5

Object recognition/time with new object
(% of total time)

76±7* 42±11

Y-maze/time in novel arm (% of total time) 62±6* 48±2
Plasma P levels (nmol/l) 96±15* 44±10
Plasma 3α,5α-THP levels (nmol/l) 48±21# 21±12
Midbrain P levels (nmol/g) 46±13* 16±4
Midbrain 3α,5α-THP levels (nmol/g) 23±7# 15±5

* Indicates analyses of variance or t-tests reveal a significant difference
(pb0.05) between groups. # Indicates analyses of variance or t-tests reveal a
tendency for differences (pb0.10) between groups.

Fig. 1. The percentage difference in time spent on the male-associated side of the
chamber for rats (n=2–4/grp) in proestrus (behavioral estrous; black bar) or
estrous (diagonal striped bar) versus that of control diestrous rats for mating-
induced conditioned place preference. Female rats in proestrus show a greater
mating-induced conditioned place preference than do rats in estrus. ⁎ Indicates
analyses of variance or t-tests reveal a significant difference (pb0.05) between
groups.
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(4 mg/kg, SC) or vehicle. Four hours later, rats returned to the
open field and the duration of time spent exploring a novel and a
familiar object was recorded. As data shown in Table 2 indicate,
P administration increased the time spent investigating the
novel object. Although there were no controls for habituation to
the novel situation as opposed to the object in this paradigm,
similar results were observed when effects of progestins on
exploration of the novel arm in a Y-maze were investigated
using a protocol previously described (Conrad et al., 2004). As
Table 2 shows, P also increased the time spent in the novel arm
over that observed with vehicle administration. As well, the P
regimen used produced physiological levels of P and 3α,5α-
THP in plasma and midbrain. Together, these findings suggest
that progestins may enhance approach to novel stimuli; how-
ever, whether approach is facilitated due to increases in locomo-
tion, effects on memory and/or anxiety were not revealed.

7. Progestins, estrogen and conditioning

Progestins, in conjunction with E2, may influence discrimina-
tion and/or recall of familiar and/or novel factors in the
environmental stimuli. Implicit memory involves associative
learning, when two events occur together and one learns about the
association between them. This kind of cognitive process relies
upon the striatum and amygdala, for emotional associations.
Effects of hormones on conditioning were originally proposed by
one of the pioneering researchers in Behavioral Endocrinology,
Frank Beach, when he was mentored by Karl Lashley, an eminent
investigator in learning and memory (Beach, 1937). During
behavioral estrus (proestrus), when rats are most receptive to
mating, acquisition of conditioned avoidance responses is
reduced compared to on diestrous (Diaz-Veliz et al., 2000),
which may enable aversive aspects of mating to be tolerated.
Environmental stimuli associated with mating, when E2 and
progestin levels are elevated, readily become conditioned stimuli
(Domjan, 2005). For example, rats that have high E2 and
progestin levels readily learn to show preference for a setting
associated with mating (Frye et al., 1998; Gonzalez-Flores et al.,
2004; Oldenburger et al., 1992; Paredes and Alonso, 1997).
Further, when there are endogenous or exogenous increases in E2

and P, the rewarding value of brain stimulation is enhanced (Bless
et al., 1997) and levels of dopamine in the VTA and nucleus
accumbens are greater (Russo et al., 2003a,b). Together these
findings suggest that progestins and/or E2 may enhance
conditioning for rewarding stimuli associated with mating.

As discussed above, female rats that are allowed to pace their
contacts with males readily show a preference for the place
associated with mating (Paredes and Alonso, 1997; Frye et al.,
1998, 2000; Gonzalez-Flores et al., 2004). We have investigated
this further to ascertain estrous cycle differences in pacing-
enhanced conditioning. Experimental female rats were placed on
one side of a conditioning chamber that allows them to “pace”
and/or control their interactions with a male for 20 min. 6 h later,
females' preference for the side associated with the male was
assessed in a 30min test. Our data (Fig. 1) shows that rats in the P-
dominant cycle phase, behavioral estrus (proestrus), are more
readily conditioned than diestrous or estrous rats, which have low
P levels but discrepant estrogen levels. Proestrous spent more
time on the side associated with the male (125±11 s) than did
estrous (20±8 s) or diestrous (23±3 s) rats. These findings
suggest that progestins, rather than E2, may underlie the hormonal
effects on conditioning observed. Furthermore, they are com-
mensurate with the findings from other laboratories which
demonstrate that conditioning to sexually-relevant stimuli can
occur readily (Domjan, 2005; Paredes and Alonso, 1997) with
even a one-trial conditioned place preference approach. As
discussed below, typically 4 or 6 pairings is necessary when
hormones are administered alone without being paired with
sexually-relevant stimuli. Perhaps conditioning occurs so readily
in response to sexually relevant because of enhanced neuroster-
oidogensis that mating can evoke (Frye, 2001a,b), which may



Fig. 2. The percentage difference in time spent on the originally non-preferred
side of the chamber (control) when ovx rats (n=8–12/grp) that had been
administered progesterone (4 mg/kg, SC; black bar) versus vehicle (open bar) on
training days were subsequently tested for side preference. * Indicates analyses
of variance revealed a significant increase (pb0.05) in conditioned place
preference for P compared to vehicle administered ovx rats. *pb0.05.
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serve to consolidate reproductively-relevant information and/or
reduce anxiety to a novel context.

8. Progestins alone and conditioning

Evidence from the literature suggests that progestins can
enhance conditioning in the absence of E2. Administration of
3α,5α-THP to mice produces CPP (Finn et al., 1997) and state
dependent reward (Romieu et al., 2005). Among rats, 3α,5α-THP
administration can dose-dependently increase the release of
dopamine in the nucleus accumbens (Rouge-Pont et al., 2002).
However, a conditioned place aversion has been demonstrated
among rats administered 3α,5α-THP (Beauchamp et al., 2000).

Progestins can act as a discriminative stimulus in rats perhaps
related to their profound anesthetic effects (Selye, 1942). P
(100 mg/kg, IP, 15–30 min before the test) and a synthetic
hypnotic (viadril 25 mg/kg) exert similar discriminative stimulus
effects in the T-maze (De Beun, 1999; Stewart et al., 1967). In
other drug discrimination paradigms, P is discernable from
vehicle, and generalizes to pentobarbital (Gorzalka et al., 1995;
Heinsbroek et al., 1987a,b). In conditioned aversion tasks, P
decreases avoidance behavior (Farr et al., 1995; Manshio and
Gershbein, 1975). Findings from people are limited. Subjective
memory complaints during pregnancy are associated with
impairments in implicit memory (Buckwalter et al., 1998),
which may be related to progestins having effects on optimal
levels of arousal for performance. Because these findings suggest
that progestins may have salient effects to enhance conditioning,
we have begun to investigate this further using the CPP task.

9. Progestins and conditioned place preference

Conditioned place preference has been used to determine the
rewarding effects of compounds by establishing the contingent
associations between an agent administered and environmental
stimuli paired with the agent (White and Carr, 1985). We have
demonstrated that progestins can enhance CPP of rats (Frye,
2006a), which is mediated by the nucleus accumbens. In our CPP
paradigm for rats, after 2 days of habituation to the CPP chamber,
there is a baseline test day. Rats were then assigned to either
receive vehicle or P (4 mg/kg) paired with the originally non-
preferred side of the chamber on conditioning days (1–2 and 5–7).
All rats receive vehicle paired with the originally preferred side of
the chamber on control days (3–4 and 8–9). 24 h after the last
pairing, rats are given a preference test. InOVX rats, pairing Pwith
the originally non-preferred side of the chamber nearly doubled
the time spent on the originally non-preferred side of the chamber
on the test day. Notably this was not seen in vehicle-administered
rats (Fig. 2). These data suggest that P can enhance CPP of rats.

To begin to address the putative mechanisms by which P may
influence CPP, we have also investigated P's effects on CPP when
administered to wildtype or progestin receptor knockout (PRKO)
mice. A slightly different CPP paradigm is utilized for mice (Finn
et al., 1997). Mice were habituated for 1 day to the conditioning
apparatus. For the next 4 days, mice were administered P
(10 mg/kg) or vehicle and placed in the conditioning chamber that
had either a grid floor or a floor with holes in it. The following
4 days, mice were administered vehicle and placed in the chamber
that had a floor type opposite to that they were exposed to
previously. On test day, the floor of the conditioning chamber was
equally divided so that half is a “grid” floor and half is a “hole”
floor. The amount of time that mice spend on each floor type was
recorded. P had similar effects to produce a place preference in
wildtype and PR knockout (PRKO) mice compared to vehicle
(Fig. 3). These data suggest that P can produce a CPP in mice and
that these effects can occur independent of actions at nuclear PRs.
Given that PRKO mice readily convert P to 3α,5α-THP (Frye et
al., 2006d; Frye andVongher, 1999a,b,c,d,e), 3α,5α-THP does not
bind to PRs (Rupprecht and Holsboer, 1999), and 3α,5α-THP has
been demonstrated to enhance CPP of mice in this paradigm (Finn
et al., 1997), these findings are consistent with the notion that
3α,5α-THP may underlie effects of progestins to enhance
conditioning. These findings that 3α,5α-THP may underlie such
effects also provoke the question as to whether these data may not
be explained by effects on conditioning and instead by simply a
reduction in anxiety. Indeed, we have demonstrated that this P
regimen can also reduce anxiety behavior, enhance 3α,5α-THP
levels, and have agonist-like actions atGABAA receptors similarly
among wildtype and PRKO mice (Frye et al., 2006b,c,d).

10. Progestins, stress, HPA function

It has been proposed that 3α,5α-THP may be an important
neuroendocrine regulator that maymediate responses to stress and/
or environmental stimuli (Engel and Grant, 2001). In support,
previous studies show that both 3α,5α-THP antibody (Purdy et al.,
1991) and THDOC administration (Owens et al., 1992) to rats
reduce plasma corticosterone levels in response to stress, showing
that neurosteroids attenuate HPA axis. These effects are likely due
to inhibition of hypothalamicGABAA receptors that regulate CRH



Fig. 4. Plasma levels of corticosterone following behavior testing for ovx rats
(n=4–8/grp) administered P (4 mg/kg, SC; black bars), 3α,5α-THP (4 mg/kg,
SC; grey bars) or vehicle (sesame oil 0.2 cc; open bars). * Indicates analyses of
variance revealed a significant decrease (pb0.05) in corticosterone levels for P
or 3α,5α-THP-administered mice.
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transcription, peptide levels, secretion and subsequent activation of
pituitary and adrenal responses. For example, administration of
3α,5α-THP to ovx rats decreases hypothalamic pituitary adrenal
axis function. Acute administration of 3α,5α-THP counteracts the
anxiogenic activity of CRH and interferes with corticosteroid
mediated regulation of CRH release and gene transcription
(Patchev et al., 1994). Acute administration of P can buffer
glucocorticoid feedback on the gene expression of CRH in the
hypothalamus and corticosteroid receptors in hippocampus
(Patchev and Almeida, 1996). Based upon these findings, we
investigated whether P administration to ovx rats alters plasma
corticosterone levels. Ovx rats were administered 4 mg/kg of P or
3α,5α-THP 3 h before tested in the open field, plus maze, and
social interaction tasks. Immediately following this test battery,
serum was collected and corticosterone levels were measured by
radioimmunoassay. As Fig. 4 illustrates, behavioral testing pro-
duced modest increases in plasma corticosterone secretion of ovx
rats, but P or 3α,5α-THP administration attenuated this. These
data, and the findings from the literature discussed above, suggest
that P and 3α,5α-THP may enhance parasympathetic activity and
thereby have effects to quiet stress-induced HPA (over)-activation.

The other main body of evidence that 3α,5α-THP may be an
important neuroendocrine regulator thatmediates stress responses
is that 3α,5α-THP is increased rapidly in response to environ-
mental stimuli. In support, a number of different types of acute
stressors can alter 3α,5α-THP production. Elevations in plasma
and central 3α,5α-THP levels occur rapidly (within 5 min) in
response to ambient temperature swim stress (Purdy et al., 1991).
Ether exposure can increase plasma levels of P (Erskine and
Kornberg, 1992). Exposure to acute foot shock can increase levels
of 3α,5α-THP in the cerebral cortex (Drugan et al., 1993). In
addition to these life-threatening stimuli, other less aversive
events can also alter 3α,5α-THP production. As previously
Fig. 3. The percentage difference in time spent on the conditioned floor of
wildtype (WT; black bars) or PRKO (horizontal striped bars) mice (n=4–8/grp)
that were administered P (10 mg/kg SC) paired with conditioning versus vehicle
(sesame oil). P administration increases conditioned place preference in both
WT and PRKO mice compared to vehicle control. * Indicates analyses of
variance revealed a significant increase (pb0.05) in conditioned place
preference at test time for P administered mice compared to vehicle controls.
*pb0.05.
indicated, mating produces rapid and robust increases inmidbrain
3α,5α-THP levels in the absence of peripheral sources of steroid
hormones from the ovaries and/or adrenals (Frye et al., 1996,
1998; Frye and Bayon, 1999; Frye, 2001a,b).

In addition to behavioral experiences having salient effects to
alter 3α,5α-THP production, evidence is emerging that some
drugs of abuse may also alter neuroosteroidogenesis. Admin-
istration of various drugs of abuse has also been demonstrated
to enhance production of 3α,5α-THP. For example, systemic
administration of delta9-tetrahydrocannabinol can increase
cortical levels of 3α,5α-THP (Grobin et al., 2005). High, but
not lower, dosages of morphine also enhance cortical levels of
3α,5α-THP (Grobin et al., 2005) and 3α,5α-THP administra-
tion amplifies the release of dopamine in the nucleus accumbens
in response to morphine (Rouge-Pont et al., 2002). Ethanol
administration increases plasma and cortical concentrations of
3α,5α-THP (Barbaccia et al., 1999; Hirani et al., 2002; Janis et
al., 1998; Morrow et al., 1999; VanDoren et al., 2000). The
levels of 3α,5α-THP following these drug regimen are
commensurate with those naturally produced by other reward-
ing behaviors, such as mating (Frye et al., 2001). P and 3α,5α-
THP administration regimen that facilitate mating do so in part
through their actions at GABAA, NMDA and/or D1 receptors in
the midbrain. It is possible that drug-induced increases in
3α,5α-THP biosynthesis may have effects on anxiety/stress,
conditioning, and/or rewarding effects through actions at these
substrates. Given that: anxiety/stress responses, motivation,
conditioning, and reward are processes that underlie drug effects,
3α,5α-THP can have a bearing upon these factors, and some
drugs have been demonstrated to alter 3α,5α-THP levels, we have
begun to investigate interactions between progestins and cocaine.
Evidence is discussed below that suggest that gender and/or
hormonal milieu, associated with differences in progestin
concentrations, may mediate response to cocaine.



Table 3
Effect of progesterone and/or cocaine administration on plasma corticosterone
(B, nmol/l), circulating progesterone (P) and 3α,5α-THP levels (nmol/l) and P
and 3α,5α-THP (nmol/g) levels in the striatum and hippocampus (n=6–8
observations/grp)

Plasma Striatum Hippocampus

B P 3α,5α-
THP

P 3α,5α-
THP

P 3α,5α-
THP

♀, Vehicle,
saline

4±1 55±9 30±3 18±6 12±4 46±10 37±15

♀, Vehicle,
cocaine

42±12 95±15 52±8 29±10 20±6 75±10 64±16

♀, P, saline 2±1 92±28 54±4 21±8 20±6 58±15 52±7
♀, P, cocaine 32±6 36±5 36±6 16±9 13±5 48±14 32±9
♂, Vehicle,
saline

2±1 41±3 20±3 15±4 10±3 35±9 26±9

♂, Vehicle,
cocaine

27±8 73±12 45±9 22±5 18±6 49±15 36±10

♂, P, saline 1±1 82±20 39±10 19±6 14±5 42±14 30±10
♂, P, cocaine 21±5 60±19 29±9 18±6 12±5 37±11 33±9
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11. Gender/sex differences in response to drugs of abuse

Gender differences in drug addiction, relapse, craving, rate of
drug use, and subjective effects of people suggest that women
may be more sensitive to effects of drugs, such as cocaine (Chen
and Kandel, 2002; Kosten et al., 1996; Robbins et al., 1999).
Althoughmen havemore opportunities to try cocaine, women are
as likely as men to use cocaine once exposure has occurred (Van
Etten et al., 1999). Women are more likely to experience more
nervousness after cocaine use, take longer to feel subjective
effects of cocaine, report less euphoria and dysphoria, have more
severe drug use, and have stronger cravings in response to cues,
than do men (Kosten et al., 1996). Thus, women may experience
greater physiological arousal in response to cocaine and the
subjective effects may persist for longer, leading perhaps to more
severe drug use and/or stronger cravings in response to cues.

There are also sex differences in response to cocaine in animal
models. Female rats have greater locomotor and stereotypic
behaviors than do male rats after acute and chronic cocaine
administration (Festa et al., 2003, 2004; Van Etten and Anthony,
2001). Female rats require lower dosages of cocaine to achieve
responses similar to those of male rats, and their behavioral
responses persist longer than do male responses (Festa et al.,
2004). Female rats self-administered cocaine faster and more
often and develop faster contiguous associations between envi-
ronmental context and cocaine's rewarding properties than do
male rats (Lynch et al., 2000; Lynch and Carroll, 1999, 2000).
Thus, female, as compared to male, rats may show greater
sensitivity to the psychomotor effects of cocaine, and may more
readily consume cocaine and condition to its effects.

12. Progestins and response to drugs of abuse

Women's hormonal milieu may influence their subjective
response to cocaine. Women who use cocaine have attenuated
subjective responses and less desire to smoke cocaine during the
progestin-dominant luteal phase than during the follicular phase of
the menstrual cycle (Evans et al., 2002; Sofuoglu et al., 2002).
Oral administration of Pmay attenuate some of the subjective and/
or the cardiovascular effects of cocaine self-administration in both
men and women (Evans and Foltin, 2006; Sofuoglu et al., 2002;
Sofuoglu et al., 2004). Thus, these findings suggest that progestins
may dampen women's response to the effects of cocaine.

In animal models, progestins may also dampen effects of
cocaine. In support, psychomotor effects of cocaine and self-
administration are lower during the progestin-dominant phase of
the estrous phase (Quinones-Jenab et al., 1999; Roberts et al.,
1989a). Progesterone administration to rats attenuates CPP
induced by cocaine and E2-induced cocaine sensitivity/sensiti-
zation (Becker, 1999; Jackson et al., 2006; Niyomchai et al.,
2005; Russo et al., 2003a,b; Sircar and Kim, 1999). Thus, these
findings suggest that P may dampen rats' psychological and/or
physiological response to the effects of cocaine.

To address this further, in collaboration with Dr. Quiñones-
Jenab, we have investigated what the effects of cocaine are on
HPA responses and de novo production of 3α,5α-THP and the
extent to which P administration may alter these effects. Adult
ovx female and gonadectomized male rodents were administered
P (500 μg, SC) or sesame oil vehicle 3 to 4 h prior to cocaine
(5 mg/kg IP for males or 20 mg/kg IP for females) or saline
vehicle administration. As Table 3 indicates, P had modest effects
inmale and female rats to dampen plasma corticosterone secretion
compared to vehicle administration. Cocaine had very dramatic
effects to increase corticosterone secretion but co-administration
of P dampened these responses. In the serum, striatum and
hippocampus, cocaine also enhanced P and 3α,5α-THP levels, to
concentrations which were comparable to that produced by P
administration in the absence of cocaine, but co-administration of
P and cocaine dampened down these stress-induced increases in
neuroendocrine levels. Notably, the levels of progestins produced
by cocaine or P alone were commensurate with circulating
concentrations of P that we have previously demonstrated can
produce mnemonic effects in learning tasks mediated by the
striatum or hippocampus, whereas co-administration of P and
cocaine produced lower levels of progestins and corticosterone,
which may underlie the effects of P administration to obviate
cocaine-induced CPP (Frye et al., 2006b,c,d; Frye and Rhodes,
2006; Niyomchai et al., 2005; Russo et al., 2003b; Walf et al., in
press). Further, these findings suggest that physiological and/or
interoceptive effects of cocaine may involve stress-induced
increases in corticosteroids and progestins and that administration
of P may dampen some of the psychotropic effects of cocaine by
attenuating stress-induced activation of neuroendocrine res-
ponses. It is important to note that it has also been reported that
cocaine has no effect on 3α,5α-THP levels (Grobin et al., 2005).

13. Progestins, sensory and/or attentional processing

It is also important to note that progestins can also influence
sensory and/or attentional processes. There are menstrual cycle
variations in sensitivity to tactile stimuli, olfaction and visual
detection (Bereiter and Barker, 1980; DeMarchi and Tong, 1972;
Diamond et al., 1972; Henkin, 1974; Kenshalo, 1996; Sommer,
1973; Zimmerman and Parlee, 1973). Among rodents, size of
receptive fields for the whisker barrel, flank, or perineum is greater
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when hormone levels are high (Frye and Rhodes, 2005a,b,c; Kow
and Pfaff, 1983). Progestins can also enhance attentional processes.
Rats in behavioral estrus show less distractability than do diestrous
rats (Birke et al., 1979). Improved performance on perceptual
restructuring tasks is seen during the progestin dominant luteal
phase (Broverman et al., 1968; Klaiber et al., 1974). Thus, it will be
important to evaluate how progestins' effects on these processes
may also influence the outcomes discussed above.
14. Summary

Findings have been presented that demonstrated that: P and/or
3α,5α-THP can enhance, or be increased by rewarding behavior
and that some of these effects occur independent of actions at
intracellular PRs, implying actions of 3α,5α-THP via its
substrates, which include GABAA, NMDA, and/or D1 receptors.
Administration of P or 3α,5α-THP can enhance approach and
dampen corticosterone secretion. 3α,5α-THP is increased in
response to novel stressors, including cocaine administration. P
administration can dampen stress hormone secretion in response
to cocaine administration. These findings suggest that progestins
may have effects on reward, conditioning and/or stress hormone
secretion that may influence vulnerability to drug abuse.
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